Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk2.s |
⊢ 𝑆 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑖 ∈ 𝑇 ( 𝑖 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑓 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑓 ∘ ◡ 𝐹 ) ) ) ) ) ) |
10 |
|
cdlemk2.q |
⊢ 𝑄 = ( 𝑆 ‘ 𝐶 ) |
11 |
|
cdlemk2.v |
⊢ 𝑉 = ( 𝑑 ∈ 𝑇 ↦ ( ℩ 𝑘 ∈ 𝑇 ( 𝑘 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑑 ) ) ∧ ( ( 𝑄 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑑 ∘ ◡ 𝐶 ) ) ) ) ) ) |
12 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
13 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
14 |
12 13
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
simp211 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
16 |
|
simp212 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐶 ∈ 𝑇 ) |
17 |
|
simp213 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑁 ∈ 𝑇 ) |
18 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ∈ 𝑇 ) |
19 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑋 ∈ 𝑇 ) |
20 |
17 18 19
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ) |
21 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
22 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
23 |
|
simp322 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
24 |
|
simp323 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐶 ≠ ( I ↾ 𝐵 ) ) |
25 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) ) |
26 |
23 24 25
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) |
27 |
|
simp23r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑋 ≠ ( I ↾ 𝐵 ) ) |
28 |
|
simp321 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ) |
29 |
27 28
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑋 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ) ) |
30 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk12u |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ) ∧ ( ( 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ) ∧ ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ) ) → ( ( 𝑉 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) ) ) |
32 |
14 15 16 20 21 22 26 29 30 31
|
syl333anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑋 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐶 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐶 ) ∧ ( 𝑅 ‘ 𝑋 ) ≠ ( 𝑅 ‘ 𝐶 ) ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑋 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐶 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑉 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) ) ) |