Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk1.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk1.s |
⊢ 𝑆 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑖 ∈ 𝑇 ( 𝑖 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑓 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑓 ∘ ◡ 𝐹 ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
⊢ 𝑂 = ( 𝑆 ‘ 𝐷 ) |
11 |
|
cdlemk1.u |
⊢ 𝑈 = ( 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝐷 ) ) ) ) ) ) |
12 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuel |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ) |
14 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
15 |
2 5 6 7
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) ∈ 𝐴 ) |
16 |
12 13 14 15
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) ∈ 𝐴 ) |