| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 2 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 3 |
1 2
|
pm3.2i |
⊢ ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) |
| 5 |
|
chincl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) |
| 6 |
|
chlub |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) ) |
| 7 |
4 5 4 6
|
syl3anc |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) ) |
| 8 |
3 7
|
mpbii |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) |
| 9 |
|
chub1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 10 |
5 9
|
syldan |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
| 11 |
8 10
|
eqssd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐴 ) |