| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- A C_ A |
| 2 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 3 |
1 2
|
pm3.2i |
|- ( A C_ A /\ ( A i^i B ) C_ A ) |
| 4 |
|
simpl |
|- ( ( A e. CH /\ B e. CH ) -> A e. CH ) |
| 5 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
| 6 |
|
chlub |
|- ( ( A e. CH /\ ( A i^i B ) e. CH /\ A e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) ) |
| 7 |
4 5 4 6
|
syl3anc |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A C_ A /\ ( A i^i B ) C_ A ) <-> ( A vH ( A i^i B ) ) C_ A ) ) |
| 8 |
3 7
|
mpbii |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) C_ A ) |
| 9 |
|
chub1 |
|- ( ( A e. CH /\ ( A i^i B ) e. CH ) -> A C_ ( A vH ( A i^i B ) ) ) |
| 10 |
5 9
|
syldan |
|- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH ( A i^i B ) ) ) |
| 11 |
8 10
|
eqssd |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH ( A i^i B ) ) = A ) |