Step |
Hyp |
Ref |
Expression |
1 |
|
chrelat3.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chrelat3.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
chrelat3i |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
4 |
2 1
|
chrelat3i |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
5 |
3 4
|
anbi12i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) ) |
6 |
|
eqss |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
7 |
|
ralbiim |
⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ↔ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |