Metamath Proof Explorer


Theorem chrelat4i

Description: A consequence of relative atomicity. Extensionality principle: two lattice elements are equal iff they majorize the same atoms. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chrelat3.1
|- A e. CH
chrelat3.2
|- B e. CH
Assertion chrelat4i
|- ( A = B <-> A. x e. HAtoms ( x C_ A <-> x C_ B ) )

Proof

Step Hyp Ref Expression
1 chrelat3.1
 |-  A e. CH
2 chrelat3.2
 |-  B e. CH
3 1 2 chrelat3i
 |-  ( A C_ B <-> A. x e. HAtoms ( x C_ A -> x C_ B ) )
4 2 1 chrelat3i
 |-  ( B C_ A <-> A. x e. HAtoms ( x C_ B -> x C_ A ) )
5 3 4 anbi12i
 |-  ( ( A C_ B /\ B C_ A ) <-> ( A. x e. HAtoms ( x C_ A -> x C_ B ) /\ A. x e. HAtoms ( x C_ B -> x C_ A ) ) )
6 eqss
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )
7 ralbiim
 |-  ( A. x e. HAtoms ( x C_ A <-> x C_ B ) <-> ( A. x e. HAtoms ( x C_ A -> x C_ B ) /\ A. x e. HAtoms ( x C_ B -> x C_ A ) ) )
8 5 6 7 3bitr4i
 |-  ( A = B <-> A. x e. HAtoms ( x C_ A <-> x C_ B ) )