Metamath Proof Explorer


Theorem clduni

Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Assertion clduni ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
2 1 biimpi ( 𝐽 ∈ Top → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
3 cldmreon ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐽 ) )
4 mreuni ( ( Clsd ‘ 𝐽 ) ∈ ( Moore ‘ 𝐽 ) → ( Clsd ‘ 𝐽 ) = 𝐽 )
5 2 3 4 3syl ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = 𝐽 )