Step |
Hyp |
Ref |
Expression |
1 |
|
opncldeqv.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
opncldeqv.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
3
|
cldopn |
⊢ ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ 𝐽 ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ 𝐽 ) |
6 |
3
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
7 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) |
8 |
|
dfss4 |
⊢ ( 𝑥 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) = 𝑥 ) |
9 |
7 8
|
sylib |
⊢ ( 𝑥 ∈ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) = 𝑥 ) |
10 |
9
|
eqcomd |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → 𝑥 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
12 |
6 11
|
jca |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
14 |
|
difeq2 |
⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ∪ 𝐽 ∖ 𝑦 ) = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ↔ 𝑥 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) ) |
16 |
13 15
|
anbi12d |
⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) ↔ ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝑥 ) ) ) ) ) |
17 |
6 12 16
|
spcedv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ∃ 𝑦 ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) ) |
18 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) |
20 |
1 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( ∪ 𝐽 ∖ 𝑦 ) ) |
21 |
5 20 2
|
ralxfrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐽 𝜓 ↔ ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝜒 ) ) |