Metamath Proof Explorer


Theorem opncldeqv

Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses opncldeqv.1 ( 𝜑𝐽 ∈ Top )
opncldeqv.2 ( ( 𝜑𝑥 = ( 𝐽𝑦 ) ) → ( 𝜓𝜒 ) )
Assertion opncldeqv ( 𝜑 → ( ∀ 𝑥𝐽 𝜓 ↔ ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝜒 ) )

Proof

Step Hyp Ref Expression
1 opncldeqv.1 ( 𝜑𝐽 ∈ Top )
2 opncldeqv.2 ( ( 𝜑𝑥 = ( 𝐽𝑦 ) ) → ( 𝜓𝜒 ) )
3 eqid 𝐽 = 𝐽
4 3 cldopn ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐽𝑦 ) ∈ 𝐽 )
5 4 adantl ( ( 𝜑𝑦 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽𝑦 ) ∈ 𝐽 )
6 3 opncld ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( 𝐽𝑥 ) ∈ ( Clsd ‘ 𝐽 ) )
7 elssuni ( 𝑥𝐽𝑥 𝐽 )
8 dfss4 ( 𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥 ) ) = 𝑥 )
9 7 8 sylib ( 𝑥𝐽 → ( 𝐽 ∖ ( 𝐽𝑥 ) ) = 𝑥 )
10 9 eqcomd ( 𝑥𝐽𝑥 = ( 𝐽 ∖ ( 𝐽𝑥 ) ) )
11 10 adantl ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥 ) ) )
12 6 11 jca ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( ( 𝐽𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥 ) ) ) )
13 eleq1 ( 𝑦 = ( 𝐽𝑥 ) → ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐽𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) )
14 difeq2 ( 𝑦 = ( 𝐽𝑥 ) → ( 𝐽𝑦 ) = ( 𝐽 ∖ ( 𝐽𝑥 ) ) )
15 14 eqeq2d ( 𝑦 = ( 𝐽𝑥 ) → ( 𝑥 = ( 𝐽𝑦 ) ↔ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥 ) ) ) )
16 13 15 anbi12d ( 𝑦 = ( 𝐽𝑥 ) → ( ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( 𝐽𝑦 ) ) ↔ ( ( 𝐽𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥 ) ) ) ) )
17 6 12 16 spcedv ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ∃ 𝑦 ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( 𝐽𝑦 ) ) )
18 df-rex ( ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( 𝐽𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑥 = ( 𝐽𝑦 ) ) )
19 17 18 sylibr ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( 𝐽𝑦 ) )
20 1 19 sylan ( ( 𝜑𝑥𝐽 ) → ∃ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝑥 = ( 𝐽𝑦 ) )
21 5 20 2 ralxfrd ( 𝜑 → ( ∀ 𝑥𝐽 𝜓 ↔ ∀ 𝑦 ∈ ( Clsd ‘ 𝐽 ) 𝜒 ) )