Metamath Proof Explorer


Theorem opndisj

Description: Two ways of saying that two open sets are disjoint, if J is a topology and X is an open set. (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Assertion opndisj ( 𝑍 = ( 𝐽𝑋 ) → ( 𝑌 ∈ ( 𝐽 ∩ 𝒫 𝑍 ) ↔ ( 𝑌𝐽 ∧ ( 𝑋𝑌 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 elpwg ( 𝑌𝐽 → ( 𝑌 ∈ 𝒫 𝑍𝑌𝑍 ) )
2 sseq2 ( 𝑍 = ( 𝐽𝑋 ) → ( 𝑌𝑍𝑌 ⊆ ( 𝐽𝑋 ) ) )
3 1 2 sylan9bbr ( ( 𝑍 = ( 𝐽𝑋 ) ∧ 𝑌𝐽 ) → ( 𝑌 ∈ 𝒫 𝑍𝑌 ⊆ ( 𝐽𝑋 ) ) )
4 3 pm5.32da ( 𝑍 = ( 𝐽𝑋 ) → ( ( 𝑌𝐽𝑌 ∈ 𝒫 𝑍 ) ↔ ( 𝑌𝐽𝑌 ⊆ ( 𝐽𝑋 ) ) ) )
5 elin ( 𝑌 ∈ ( 𝐽 ∩ 𝒫 𝑍 ) ↔ ( 𝑌𝐽𝑌 ∈ 𝒫 𝑍 ) )
6 elssuni ( 𝑌𝐽𝑌 𝐽 )
7 incom ( 𝑋𝑌 ) = ( 𝑌𝑋 )
8 7 eqeq1i ( ( 𝑋𝑌 ) = ∅ ↔ ( 𝑌𝑋 ) = ∅ )
9 reldisj ( 𝑌 𝐽 → ( ( 𝑌𝑋 ) = ∅ ↔ 𝑌 ⊆ ( 𝐽𝑋 ) ) )
10 8 9 syl5bb ( 𝑌 𝐽 → ( ( 𝑋𝑌 ) = ∅ ↔ 𝑌 ⊆ ( 𝐽𝑋 ) ) )
11 6 10 syl ( 𝑌𝐽 → ( ( 𝑋𝑌 ) = ∅ ↔ 𝑌 ⊆ ( 𝐽𝑋 ) ) )
12 11 pm5.32i ( ( 𝑌𝐽 ∧ ( 𝑋𝑌 ) = ∅ ) ↔ ( 𝑌𝐽𝑌 ⊆ ( 𝐽𝑋 ) ) )
13 4 5 12 3bitr4g ( 𝑍 = ( 𝐽𝑋 ) → ( 𝑌 ∈ ( 𝐽 ∩ 𝒫 𝑍 ) ↔ ( 𝑌𝐽 ∧ ( 𝑋𝑌 ) = ∅ ) ) )