Metamath Proof Explorer


Theorem clddisj

Description: Two ways of saying that two closed sets are disjoint, if J is a topology and X is a closed set. An alternative proof is similar to that of opndisj with elssuni replaced by the combination of cldss and eqid . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Assertion clddisj ( 𝑍 = ( 𝐽𝑋 ) → ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝑌 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) )
2 simpl ( ( 𝑍 = ( 𝐽𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑍 = ( 𝐽𝑋 ) )
3 cldrcl ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
4 clduni ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = 𝐽 )
5 4 difeq1d ( 𝐽 ∈ Top → ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( 𝐽𝑋 ) )
6 3 5 syl ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( 𝐽𝑋 ) )
7 6 adantl ( ( 𝑍 = ( 𝐽𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( 𝐽𝑋 ) )
8 2 7 eqtr4d ( ( 𝑍 = ( 𝐽𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑍 = ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) )
9 opndisj ( 𝑍 = ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) → ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝑌 ) = ∅ ) ) )
10 1 9 bitr3id ( 𝑍 = ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) → ( ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝑌 ) = ∅ ) ) )
11 10 pm5.32dra ( ( 𝑍 = ( ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑌 ∈ 𝒫 𝑍 ↔ ( 𝑋𝑌 ) = ∅ ) )
12 8 11 sylancom ( ( 𝑍 = ( 𝐽𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑌 ∈ 𝒫 𝑍 ↔ ( 𝑋𝑌 ) = ∅ ) )
13 12 pm5.32da ( 𝑍 = ( 𝐽𝑋 ) → ( ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝑌 ) = ∅ ) ) )
14 1 13 syl5bb ( 𝑍 = ( 𝐽𝑋 ) → ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋𝑌 ) = ∅ ) ) )