Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) ) |
2 |
|
simpl |
⊢ ( ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) ) |
3 |
|
cldrcl |
⊢ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
4 |
|
clduni |
⊢ ( 𝐽 ∈ Top → ∪ ( Clsd ‘ 𝐽 ) = ∪ 𝐽 ) |
5 |
4
|
difeq1d |
⊢ ( 𝐽 ∈ Top → ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( ∪ 𝐽 ∖ 𝑋 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( ∪ 𝐽 ∖ 𝑋 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) = ( ∪ 𝐽 ∖ 𝑋 ) ) |
8 |
2 7
|
eqtr4d |
⊢ ( ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑍 = ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) ) |
9 |
|
opndisj |
⊢ ( 𝑍 = ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) → ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) ) |
10 |
1 9
|
bitr3id |
⊢ ( 𝑍 = ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) → ( ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) ) |
11 |
10
|
pm5.32dra |
⊢ ( ( 𝑍 = ( ∪ ( Clsd ‘ 𝐽 ) ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑌 ∈ 𝒫 𝑍 ↔ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) |
12 |
8 11
|
sylancom |
⊢ ( ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑌 ∈ 𝒫 𝑍 ↔ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) |
13 |
12
|
pm5.32da |
⊢ ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) → ( ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑌 ∈ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) ) |
14 |
1 13
|
syl5bb |
⊢ ( 𝑍 = ( ∪ 𝐽 ∖ 𝑋 ) → ( 𝑌 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑍 ) ↔ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∩ 𝑌 ) = ∅ ) ) ) |