| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑌  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑍 )  ↔  ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑌  ∈  𝒫  𝑍 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  ∧  𝑌  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑍  =  ( ∪  𝐽  ∖  𝑋 ) ) | 
						
							| 3 |  | cldrcl | ⊢ ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 4 |  | clduni | ⊢ ( 𝐽  ∈  Top  →  ∪  ( Clsd ‘ 𝐽 )  =  ∪  𝐽 ) | 
						
							| 5 | 4 | difeq1d | ⊢ ( 𝐽  ∈  Top  →  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  =  ( ∪  𝐽  ∖  𝑋 ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  →  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  =  ( ∪  𝐽  ∖  𝑋 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  ∧  𝑌  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  =  ( ∪  𝐽  ∖  𝑋 ) ) | 
						
							| 8 | 2 7 | eqtr4d | ⊢ ( ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  ∧  𝑌  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑍  =  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 ) ) | 
						
							| 9 |  | opndisj | ⊢ ( 𝑍  =  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  →  ( 𝑌  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑍 )  ↔  ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) ) | 
						
							| 10 | 1 9 | bitr3id | ⊢ ( 𝑍  =  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  →  ( ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑌  ∈  𝒫  𝑍 )  ↔  ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) ) | 
						
							| 11 | 10 | pm5.32dra | ⊢ ( ( 𝑍  =  ( ∪  ( Clsd ‘ 𝐽 )  ∖  𝑋 )  ∧  𝑌  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑌  ∈  𝒫  𝑍  ↔  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) | 
						
							| 12 | 8 11 | sylancom | ⊢ ( ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  ∧  𝑌  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑌  ∈  𝒫  𝑍  ↔  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) | 
						
							| 13 | 12 | pm5.32da | ⊢ ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  →  ( ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑌  ∈  𝒫  𝑍 )  ↔  ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) ) | 
						
							| 14 | 1 13 | bitrid | ⊢ ( 𝑍  =  ( ∪  𝐽  ∖  𝑋 )  →  ( 𝑌  ∈  ( ( Clsd ‘ 𝐽 )  ∩  𝒫  𝑍 )  ↔  ( 𝑌  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) ) |