| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 2 |
|
biimt |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) ) |
| 4 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 6 |
5
|
bicomd |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 |
6
|
pm5.74i |
⊢ ( ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 9 |
4 8
|
bitr3i |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 10 |
3 9
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |