| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmpm1dir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmpm1dir.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
clmpm1dir.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
clmvsrinv.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
1 5 6 2
|
clmvneg1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) + 𝐴 ) = ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) ) |
| 9 |
|
clmgrp |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) |
| 10 |
1 3 4 5
|
grplinv |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) = 0 ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) = 0 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) + 𝐴 ) = 0 ) |