| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvneg1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvneg1.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
| 3 |
|
clmvneg1.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
clmvneg1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 6 |
3 5
|
clmzss |
⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ ( Base ‘ 𝐹 ) ) |
| 7 |
|
1zzd |
⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ℤ ) |
| 8 |
6 7
|
sseldd |
⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 9 |
3 5
|
clmneg |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 10 |
8 9
|
mpdan |
⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 11 |
3
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ 1 ) = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( - 1 · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) ) |
| 16 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 18 |
|
eqid |
⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) |
| 19 |
1 2 3 4 17 18
|
lmodvneg1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 20 |
16 19
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 21 |
15 20
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( - 1 · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |