| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvneg1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvneg1.n |  |-  N = ( invg ` W ) | 
						
							| 3 |  | clmvneg1.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | clmvneg1.s |  |-  .x. = ( .s ` W ) | 
						
							| 5 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 6 | 3 5 | clmzss |  |-  ( W e. CMod -> ZZ C_ ( Base ` F ) ) | 
						
							| 7 |  | 1zzd |  |-  ( W e. CMod -> 1 e. ZZ ) | 
						
							| 8 | 6 7 | sseldd |  |-  ( W e. CMod -> 1 e. ( Base ` F ) ) | 
						
							| 9 | 3 5 | clmneg |  |-  ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) | 
						
							| 10 | 8 9 | mpdan |  |-  ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) | 
						
							| 11 | 3 | clm1 |  |-  ( W e. CMod -> 1 = ( 1r ` F ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( W e. CMod -> ( ( invg ` F ) ` 1 ) = ( ( invg ` F ) ` ( 1r ` F ) ) ) | 
						
							| 13 | 10 12 | eqtrd |  |-  ( W e. CMod -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( W e. CMod /\ X e. V ) -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) ) | 
						
							| 16 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 18 |  | eqid |  |-  ( invg ` F ) = ( invg ` F ) | 
						
							| 19 | 1 2 3 4 17 18 | lmodvneg1 |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) | 
						
							| 20 | 16 19 | sylan |  |-  ( ( W e. CMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) | 
						
							| 21 | 15 20 | eqtrd |  |-  ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( N ` X ) ) |