Metamath Proof Explorer


Theorem clmvsubval

Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 . (Contributed by NM, 31-Mar-2014) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses clmvsubval.v 𝑉 = ( Base ‘ 𝑊 )
clmvsubval.p + = ( +g𝑊 )
clmvsubval.m = ( -g𝑊 )
clmvsubval.f 𝐹 = ( Scalar ‘ 𝑊 )
clmvsubval.s · = ( ·𝑠𝑊 )
Assertion clmvsubval ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 clmvsubval.v 𝑉 = ( Base ‘ 𝑊 )
2 clmvsubval.p + = ( +g𝑊 )
3 clmvsubval.m = ( -g𝑊 )
4 clmvsubval.f 𝐹 = ( Scalar ‘ 𝑊 )
5 clmvsubval.s · = ( ·𝑠𝑊 )
6 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
7 eqid ( invg𝐹 ) = ( invg𝐹 )
8 eqid ( 1r𝐹 ) = ( 1r𝐹 )
9 1 2 3 4 5 7 8 lmodvsubval2 ( ( 𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) · 𝐵 ) ) )
10 6 9 syl3an1 ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) · 𝐵 ) ) )
11 4 clm1 ( 𝑊 ∈ ℂMod → 1 = ( 1r𝐹 ) )
12 11 eqcomd ( 𝑊 ∈ ℂMod → ( 1r𝐹 ) = 1 )
13 12 fveq2d ( 𝑊 ∈ ℂMod → ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) = ( ( invg𝐹 ) ‘ 1 ) )
14 4 clmring ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring )
15 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
16 15 8 ringidcl ( 𝐹 ∈ Ring → ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) )
17 14 16 syl ( 𝑊 ∈ ℂMod → ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) )
18 11 17 eqeltrd ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ 𝐹 ) )
19 4 15 clmneg ( ( 𝑊 ∈ ℂMod ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → - 1 = ( ( invg𝐹 ) ‘ 1 ) )
20 18 19 mpdan ( 𝑊 ∈ ℂMod → - 1 = ( ( invg𝐹 ) ‘ 1 ) )
21 13 20 eqtr4d ( 𝑊 ∈ ℂMod → ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) = - 1 )
22 21 3ad2ant1 ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) = - 1 )
23 22 oveq1d ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) · 𝐵 ) = ( - 1 · 𝐵 ) )
24 23 oveq2d ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 + ( ( ( invg𝐹 ) ‘ ( 1r𝐹 ) ) · 𝐵 ) ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
25 10 24 eqtrd ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )