| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsubval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvsubval.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
clmvsubval.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
clmvsubval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
clmvsubval.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 7 |
|
eqid |
⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 9 |
1 2 3 4 5 7 8
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) ) |
| 10 |
6 9
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) ) |
| 11 |
4
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) = 1 ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 14 |
4
|
clmring |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 16 |
15 8
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 17 |
14 16
|
syl |
⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 18 |
11 17
|
eqeltrd |
⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 19 |
4 15
|
clmneg |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 20 |
18 19
|
mpdan |
⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 21 |
13 20
|
eqtr4d |
⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = - 1 ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = - 1 ) |
| 23 |
22
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) = ( - 1 · 𝐵 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝐵 ) ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 25 |
10 24
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |