| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsubval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvsubval.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
clmvsubval.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
clmvsubval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
clmvsubval.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
1 2 3 4 5
|
clmvsubval |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 7 |
|
clmabl |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ Abel ) |
| 9 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 10 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 12 |
4 11
|
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ 𝐹 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ 𝐹 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 15 |
1 4 5 11
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 16 |
10 13 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 18 |
1 2
|
ablcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝐴 ∈ 𝑉 ∧ ( - 1 · 𝐵 ) ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |
| 19 |
8 9 17 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |
| 20 |
6 19
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |