| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvsubval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvsubval.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | clmvsubval.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | clmvsubval.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | clmvsubval.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 | 1 2 3 4 5 | clmvsubval |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) | 
						
							| 7 |  | clmabl |  |-  ( W e. CMod -> W e. Abel ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> W e. Abel ) | 
						
							| 9 |  | simp2 |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> A e. V ) | 
						
							| 10 |  | simpl |  |-  ( ( W e. CMod /\ B e. V ) -> W e. CMod ) | 
						
							| 11 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 12 | 4 11 | clmneg1 |  |-  ( W e. CMod -> -u 1 e. ( Base ` F ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( W e. CMod /\ B e. V ) -> -u 1 e. ( Base ` F ) ) | 
						
							| 14 |  | simpr |  |-  ( ( W e. CMod /\ B e. V ) -> B e. V ) | 
						
							| 15 | 1 4 5 11 | clmvscl |  |-  ( ( W e. CMod /\ -u 1 e. ( Base ` F ) /\ B e. V ) -> ( -u 1 .x. B ) e. V ) | 
						
							| 16 | 10 13 14 15 | syl3anc |  |-  ( ( W e. CMod /\ B e. V ) -> ( -u 1 .x. B ) e. V ) | 
						
							| 17 | 16 | 3adant2 |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. B ) e. V ) | 
						
							| 18 | 1 2 | ablcom |  |-  ( ( W e. Abel /\ A e. V /\ ( -u 1 .x. B ) e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) | 
						
							| 19 | 8 9 17 18 | syl3anc |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) | 
						
							| 20 | 6 19 | eqtrd |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( ( -u 1 .x. B ) .+ A ) ) |