| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvz.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvz.m |  |-  .- = ( -g ` W ) | 
						
							| 3 |  | clmvz.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | clmvz.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | simpl |  |-  ( ( W e. CMod /\ A e. V ) -> W e. CMod ) | 
						
							| 6 |  | clmgrp |  |-  ( W e. CMod -> W e. Grp ) | 
						
							| 7 | 1 4 | grpidcl |  |-  ( W e. Grp -> .0. e. V ) | 
						
							| 8 | 6 7 | syl |  |-  ( W e. CMod -> .0. e. V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( W e. CMod /\ A e. V ) -> .0. e. V ) | 
						
							| 10 |  | simpr |  |-  ( ( W e. CMod /\ A e. V ) -> A e. V ) | 
						
							| 11 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 13 | 1 11 2 12 3 | clmvsubval2 |  |-  ( ( W e. CMod /\ .0. e. V /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) | 
						
							| 14 | 5 9 10 13 | syl3anc |  |-  ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 16 | 12 15 | clmneg1 |  |-  ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 18 | 1 12 3 15 | clmvscl |  |-  ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( -u 1 .x. A ) e. V ) | 
						
							| 19 | 5 17 10 18 | syl3anc |  |-  ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) e. V ) | 
						
							| 20 | 1 11 4 | grprid |  |-  ( ( W e. Grp /\ ( -u 1 .x. A ) e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) | 
						
							| 21 | 6 19 20 | syl2an2r |  |-  ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) | 
						
							| 22 | 14 21 | eqtrd |  |-  ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( -u 1 .x. A ) ) |