| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmclm.w |
|- W = ( ZMod ` G ) |
| 2 |
1
|
zlmlmod |
|- ( G e. Abel <-> W e. LMod ) |
| 3 |
2
|
biimpi |
|- ( G e. Abel -> W e. LMod ) |
| 4 |
1
|
zlmsca |
|- ( G e. Abel -> ZZring = ( Scalar ` W ) ) |
| 5 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
| 6 |
4 5
|
eqtr3di |
|- ( G e. Abel -> ( Scalar ` W ) = ( CCfld |`s ZZ ) ) |
| 7 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
| 8 |
7
|
a1i |
|- ( G e. Abel -> ZZ e. ( SubRing ` CCfld ) ) |
| 9 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 10 |
9
|
isclmi |
|- ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> W e. CMod ) |
| 11 |
3 6 8 10
|
syl3anc |
|- ( G e. Abel -> W e. CMod ) |
| 12 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 13 |
12 2
|
sylibr |
|- ( W e. CMod -> G e. Abel ) |
| 14 |
11 13
|
impbii |
|- ( G e. Abel <-> W e. CMod ) |