| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmclm.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 | 1 | zlmlmod |  |-  ( G e. Abel <-> W e. LMod ) | 
						
							| 3 | 2 | biimpi |  |-  ( G e. Abel -> W e. LMod ) | 
						
							| 4 | 1 | zlmsca |  |-  ( G e. Abel -> ZZring = ( Scalar ` W ) ) | 
						
							| 5 |  | df-zring |  |-  ZZring = ( CCfld |`s ZZ ) | 
						
							| 6 | 4 5 | eqtr3di |  |-  ( G e. Abel -> ( Scalar ` W ) = ( CCfld |`s ZZ ) ) | 
						
							| 7 |  | zsubrg |  |-  ZZ e. ( SubRing ` CCfld ) | 
						
							| 8 | 7 | a1i |  |-  ( G e. Abel -> ZZ e. ( SubRing ` CCfld ) ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 10 | 9 | isclmi |  |-  ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> W e. CMod ) | 
						
							| 11 | 3 6 8 10 | syl3anc |  |-  ( G e. Abel -> W e. CMod ) | 
						
							| 12 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 13 | 12 2 | sylibr |  |-  ( W e. CMod -> G e. Abel ) | 
						
							| 14 | 11 13 | impbii |  |-  ( G e. Abel <-> W e. CMod ) |