| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | simp1 |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. LMod ) | 
						
							| 3 |  | simp2 |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s K ) ) | 
						
							| 4 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 5 | 4 | subrgbas |  |-  ( K e. ( SubRing ` CCfld ) -> K = ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 7 | 3 | fveq2d |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) = ( Base ` ( CCfld |`s K ) ) ) | 
						
							| 8 | 6 7 | eqtr4d |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K = ( Base ` F ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( CCfld |`s K ) = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 10 | 3 9 | eqtrd |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 11 |  | simp3 |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> K e. ( SubRing ` CCfld ) ) | 
						
							| 12 | 8 11 | eqeltrrd |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> ( Base ` F ) e. ( SubRing ` CCfld ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 14 | 1 13 | isclm |  |-  ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 15 | 2 10 12 14 | syl3anbrc |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) -> W e. CMod ) |