Metamath Proof Explorer


Theorem isclmi

Description: Reverse direction of isclm . (Contributed by Mario Carneiro, 30-Oct-2015)

Ref Expression
Hypothesis clm0.f F = Scalar W
Assertion isclmi W LMod F = fld 𝑠 K K SubRing fld W CMod

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 simp1 W LMod F = fld 𝑠 K K SubRing fld W LMod
3 simp2 W LMod F = fld 𝑠 K K SubRing fld F = fld 𝑠 K
4 eqid fld 𝑠 K = fld 𝑠 K
5 4 subrgbas K SubRing fld K = Base fld 𝑠 K
6 5 3ad2ant3 W LMod F = fld 𝑠 K K SubRing fld K = Base fld 𝑠 K
7 3 fveq2d W LMod F = fld 𝑠 K K SubRing fld Base F = Base fld 𝑠 K
8 6 7 eqtr4d W LMod F = fld 𝑠 K K SubRing fld K = Base F
9 8 oveq2d W LMod F = fld 𝑠 K K SubRing fld fld 𝑠 K = fld 𝑠 Base F
10 3 9 eqtrd W LMod F = fld 𝑠 K K SubRing fld F = fld 𝑠 Base F
11 simp3 W LMod F = fld 𝑠 K K SubRing fld K SubRing fld
12 8 11 eqeltrrd W LMod F = fld 𝑠 K K SubRing fld Base F SubRing fld
13 eqid Base F = Base F
14 1 13 isclm W CMod W LMod F = fld 𝑠 Base F Base F SubRing fld
15 2 10 12 14 syl3anbrc W LMod F = fld 𝑠 K K SubRing fld W CMod