| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ LMod ) |
| 3 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 4 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
| 5 |
4
|
subrgbas |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 7 |
3
|
fveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 8 |
6 7
|
eqtr4d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 = ( Base ‘ 𝐹 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 10 |
3 9
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 11 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 12 |
8 11
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 14 |
1 13
|
isclm |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 15 |
2 10 12 14
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |