| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvz.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 3 |
|
clmvz.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
clmvz.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 6 |
|
clmgrp |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) |
| 7 |
1 4
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝑉 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 0 ∈ 𝑉 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 10 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 13 |
1 11 2 12 3
|
clmvsubval2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 0 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) ) |
| 14 |
5 9 10 13
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 16 |
12 15
|
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 |
1 12 3 15
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 ) |
| 19 |
5 17 10 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 ) |
| 20 |
1 11 4
|
grprid |
⊢ ( ( 𝑊 ∈ Grp ∧ ( - 1 · 𝐴 ) ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) = ( - 1 · 𝐴 ) ) |
| 21 |
6 19 20
|
syl2an2r |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) = ( - 1 · 𝐴 ) ) |
| 22 |
14 21
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( - 1 · 𝐴 ) ) |