| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsubval.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvsubval.p |
|- .+ = ( +g ` W ) |
| 3 |
|
clmvsubval.m |
|- .- = ( -g ` W ) |
| 4 |
|
clmvsubval.f |
|- F = ( Scalar ` W ) |
| 5 |
|
clmvsubval.s |
|- .x. = ( .s ` W ) |
| 6 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 7 |
|
eqid |
|- ( invg ` F ) = ( invg ` F ) |
| 8 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 9 |
1 2 3 4 5 7 8
|
lmodvsubval2 |
|- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) |
| 10 |
6 9
|
syl3an1 |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) |
| 11 |
4
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 12 |
11
|
eqcomd |
|- ( W e. CMod -> ( 1r ` F ) = 1 ) |
| 13 |
12
|
fveq2d |
|- ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = ( ( invg ` F ) ` 1 ) ) |
| 14 |
4
|
clmring |
|- ( W e. CMod -> F e. Ring ) |
| 15 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 16 |
15 8
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) |
| 17 |
14 16
|
syl |
|- ( W e. CMod -> ( 1r ` F ) e. ( Base ` F ) ) |
| 18 |
11 17
|
eqeltrd |
|- ( W e. CMod -> 1 e. ( Base ` F ) ) |
| 19 |
4 15
|
clmneg |
|- ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 20 |
18 19
|
mpdan |
|- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 21 |
13 20
|
eqtr4d |
|- ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) |
| 23 |
22
|
oveq1d |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) = ( -u 1 .x. B ) ) |
| 24 |
23
|
oveq2d |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 25 |
10 24
|
eqtrd |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |