| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvsubval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvsubval.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | clmvsubval.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | clmvsubval.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | clmvsubval.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 7 |  | eqid |  |-  ( invg ` F ) = ( invg ` F ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 9 | 1 2 3 4 5 7 8 | lmodvsubval2 |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) | 
						
							| 10 | 6 9 | syl3an1 |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) ) | 
						
							| 11 | 4 | clm1 |  |-  ( W e. CMod -> 1 = ( 1r ` F ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( W e. CMod -> ( 1r ` F ) = 1 ) | 
						
							| 13 | 12 | fveq2d |  |-  ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = ( ( invg ` F ) ` 1 ) ) | 
						
							| 14 | 4 | clmring |  |-  ( W e. CMod -> F e. Ring ) | 
						
							| 15 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 16 | 15 8 | ringidcl |  |-  ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) | 
						
							| 17 | 14 16 | syl |  |-  ( W e. CMod -> ( 1r ` F ) e. ( Base ` F ) ) | 
						
							| 18 | 11 17 | eqeltrd |  |-  ( W e. CMod -> 1 e. ( Base ` F ) ) | 
						
							| 19 | 4 15 | clmneg |  |-  ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) | 
						
							| 20 | 18 19 | mpdan |  |-  ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) | 
						
							| 21 | 13 20 | eqtr4d |  |-  ( W e. CMod -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( invg ` F ) ` ( 1r ` F ) ) = -u 1 ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) = ( -u 1 .x. B ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. B ) ) = ( A .+ ( -u 1 .x. B ) ) ) | 
						
							| 25 | 10 24 | eqtrd |  |-  ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |