| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmpm1dir.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clmpm1dir.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | clmpm1dir.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 4 |  | clmvsrinv.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( invg ‘ 𝑊 )  =  ( invg ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 7 | 1 5 6 2 | clmvneg1 | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉 )  →  ( - 1  ·  𝐴 )  =  ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  +  ( - 1  ·  𝐴 ) )  =  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) ) ) | 
						
							| 9 |  | clmgrp | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  Grp ) | 
						
							| 10 | 1 3 4 5 | grprinv | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) )  =   0  ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) )  =   0  ) | 
						
							| 12 | 8 11 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  +  ( - 1  ·  𝐴 ) )  =   0  ) |