| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmpm1dir.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmpm1dir.s |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | clmpm1dir.a |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | clmvsrinv.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | eqid |  |-  ( invg ` W ) = ( invg ` W ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 | 1 5 6 2 | clmvneg1 |  |-  ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) = ( ( invg ` W ) ` A ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( W e. CMod /\ A e. V ) -> ( A .+ ( -u 1 .x. A ) ) = ( A .+ ( ( invg ` W ) ` A ) ) ) | 
						
							| 9 |  | clmgrp |  |-  ( W e. CMod -> W e. Grp ) | 
						
							| 10 | 1 3 4 5 | grprinv |  |-  ( ( W e. Grp /\ A e. V ) -> ( A .+ ( ( invg ` W ) ` A ) ) = .0. ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( W e. CMod /\ A e. V ) -> ( A .+ ( ( invg ` W ) ` A ) ) = .0. ) | 
						
							| 12 | 8 11 | eqtrd |  |-  ( ( W e. CMod /\ A e. V ) -> ( A .+ ( -u 1 .x. A ) ) = .0. ) |