| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncnp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 ) ) ) ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑥  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 3 |  | cnpfcf | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) ) | 
						
							| 4 | 3 | ad4ant124 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) ) | 
						
							| 5 | 2 4 | mpbirand | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 6 | 5 | ralbidva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 7 |  | ralcom | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) )  ↔  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  𝑋 ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 9 | 8 | fclselbas | ⊢ ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  𝑥  ∈  ∪  𝐽 ) | 
						
							| 10 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥  ∈  ∪  𝐽 ) ) | 
						
							| 13 | 9 12 | imbitrrid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  𝑥  ∈  𝑋 ) ) | 
						
							| 14 | 13 | pm4.71rd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  ↔  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  ( 𝐽  fClus  𝑓 ) ) ) ) | 
						
							| 15 | 14 | imbi1d | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  ( 𝐽  fClus  𝑓 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 16 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  ( 𝐽  fClus  𝑓 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) )  ↔  ( 𝑥  ∈  𝑋  →  ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 17 | 15 16 | bitrdi | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) )  ↔  ( 𝑥  ∈  𝑋  →  ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) ) | 
						
							| 18 | 17 | ralbidv2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 )  ↔  ∀ 𝑥  ∈  𝑋 ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 )  ↔  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  𝑋 ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 20 | 7 19 | bitr4id | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝑥  ∈  ( 𝐽  fClus  𝑓 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) )  ↔  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) | 
						
							| 21 | 6 20 | bitrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) | 
						
							| 22 | 21 | pm5.32da | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 ) )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) | 
						
							| 23 | 1 22 | bitrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ∀ 𝑥  ∈  ( 𝐽  fClus  𝑓 ) ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝐾  fClusf  𝑓 ) ‘ 𝐹 ) ) ) ) |