| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrcmnd.z |
⊢ 𝑍 = ( 𝑀 ↾s ( Cntr ‘ 𝑀 ) ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) |
| 4 |
2 3
|
cntrval |
⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 5 |
|
ssid |
⊢ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) |
| 6 |
2 3
|
cntzsubg |
⊢ ( ( 𝑀 ∈ Grp ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 7 |
5 6
|
mpan2 |
⊢ ( 𝑀 ∈ Grp → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 8 |
4 7
|
eqeltrrid |
⊢ ( 𝑀 ∈ Grp → ( Cntr ‘ 𝑀 ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 9 |
1
|
subggrp |
⊢ ( ( Cntr ‘ 𝑀 ) ∈ ( SubGrp ‘ 𝑀 ) → 𝑍 ∈ Grp ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ Grp ) |
| 11 |
|
grpmnd |
⊢ ( 𝑀 ∈ Grp → 𝑀 ∈ Mnd ) |
| 12 |
1
|
cntrcmnd |
⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ CMnd ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ CMnd ) |
| 14 |
|
isabl |
⊢ ( 𝑍 ∈ Abel ↔ ( 𝑍 ∈ Grp ∧ 𝑍 ∈ CMnd ) ) |
| 15 |
10 13 14
|
sylanbrc |
⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ Abel ) |