| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrcmnd.z |  |-  Z = ( M |`s ( Cntr ` M ) ) | 
						
							| 2 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 3 |  | eqid |  |-  ( Cntz ` M ) = ( Cntz ` M ) | 
						
							| 4 | 2 3 | cntrval |  |-  ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) | 
						
							| 5 |  | ssid |  |-  ( Base ` M ) C_ ( Base ` M ) | 
						
							| 6 | 2 3 | cntzsubg |  |-  ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) | 
						
							| 8 | 4 7 | eqeltrrid |  |-  ( M e. Grp -> ( Cntr ` M ) e. ( SubGrp ` M ) ) | 
						
							| 9 | 1 | subggrp |  |-  ( ( Cntr ` M ) e. ( SubGrp ` M ) -> Z e. Grp ) | 
						
							| 10 | 8 9 | syl |  |-  ( M e. Grp -> Z e. Grp ) | 
						
							| 11 |  | grpmnd |  |-  ( M e. Grp -> M e. Mnd ) | 
						
							| 12 | 1 | cntrcmnd |  |-  ( M e. Mnd -> Z e. CMnd ) | 
						
							| 13 | 11 12 | syl |  |-  ( M e. Grp -> Z e. CMnd ) | 
						
							| 14 |  | isabl |  |-  ( Z e. Abel <-> ( Z e. Grp /\ Z e. CMnd ) ) | 
						
							| 15 | 10 13 14 | sylanbrc |  |-  ( M e. Grp -> Z e. Abel ) |