| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrcmnd.z |
|- Z = ( M |`s ( Cntr ` M ) ) |
| 2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 3 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
| 4 |
2 3
|
cntrval |
|- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 5 |
|
ssid |
|- ( Base ` M ) C_ ( Base ` M ) |
| 6 |
2 3
|
cntzsubg |
|- ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 7 |
5 6
|
mpan2 |
|- ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 8 |
4 7
|
eqeltrrid |
|- ( M e. Grp -> ( Cntr ` M ) e. ( SubGrp ` M ) ) |
| 9 |
1
|
subggrp |
|- ( ( Cntr ` M ) e. ( SubGrp ` M ) -> Z e. Grp ) |
| 10 |
8 9
|
syl |
|- ( M e. Grp -> Z e. Grp ) |
| 11 |
|
grpmnd |
|- ( M e. Grp -> M e. Mnd ) |
| 12 |
1
|
cntrcmnd |
|- ( M e. Mnd -> Z e. CMnd ) |
| 13 |
11 12
|
syl |
|- ( M e. Grp -> Z e. CMnd ) |
| 14 |
|
isabl |
|- ( Z e. Abel <-> ( Z e. Grp /\ Z e. CMnd ) ) |
| 15 |
10 13 14
|
sylanbrc |
|- ( M e. Grp -> Z e. Abel ) |