| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrcmnd.z |  |-  Z = ( M |`s ( Cntr ` M ) ) | 
						
							| 2 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 3 | 2 | cntrss |  |-  ( Cntr ` M ) C_ ( Base ` M ) | 
						
							| 4 | 1 2 | ressbas2 |  |-  ( ( Cntr ` M ) C_ ( Base ` M ) -> ( Cntr ` M ) = ( Base ` Z ) ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( M e. Mnd -> ( Cntr ` M ) = ( Base ` Z ) ) | 
						
							| 6 |  | fvex |  |-  ( Cntr ` M ) e. _V | 
						
							| 7 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 8 | 1 7 | ressplusg |  |-  ( ( Cntr ` M ) e. _V -> ( +g ` M ) = ( +g ` Z ) ) | 
						
							| 9 | 6 8 | mp1i |  |-  ( M e. Mnd -> ( +g ` M ) = ( +g ` Z ) ) | 
						
							| 10 |  | eqid |  |-  ( Cntz ` M ) = ( Cntz ` M ) | 
						
							| 11 | 2 10 | cntrval |  |-  ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) | 
						
							| 12 |  | ssid |  |-  ( Base ` M ) C_ ( Base ` M ) | 
						
							| 13 | 2 10 | cntzsubm |  |-  ( ( M e. Mnd /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) | 
						
							| 14 | 12 13 | mpan2 |  |-  ( M e. Mnd -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) | 
						
							| 15 | 11 14 | eqeltrrid |  |-  ( M e. Mnd -> ( Cntr ` M ) e. ( SubMnd ` M ) ) | 
						
							| 16 | 1 | submmnd |  |-  ( ( Cntr ` M ) e. ( SubMnd ` M ) -> Z e. Mnd ) | 
						
							| 17 | 15 16 | syl |  |-  ( M e. Mnd -> Z e. Mnd ) | 
						
							| 18 |  | simp2 |  |-  ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> x e. ( Cntr ` M ) ) | 
						
							| 19 |  | simp3 |  |-  ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Cntr ` M ) ) | 
						
							| 20 | 3 19 | sselid |  |-  ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Base ` M ) ) | 
						
							| 21 |  | eqid |  |-  ( Cntr ` M ) = ( Cntr ` M ) | 
						
							| 22 | 2 7 21 | cntri |  |-  ( ( x e. ( Cntr ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) | 
						
							| 24 | 5 9 17 23 | iscmnd |  |-  ( M e. Mnd -> Z e. CMnd ) |