| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrcmnd.z | ⊢ 𝑍  =  ( 𝑀  ↾s  ( Cntr ‘ 𝑀 ) ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 3 | 2 | cntrss | ⊢ ( Cntr ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 4 | 1 2 | ressbas2 | ⊢ ( ( Cntr ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 )  →  ( Cntr ‘ 𝑀 )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( 𝑀  ∈  Mnd  →  ( Cntr ‘ 𝑀 )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 6 |  | fvex | ⊢ ( Cntr ‘ 𝑀 )  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 8 | 1 7 | ressplusg | ⊢ ( ( Cntr ‘ 𝑀 )  ∈  V  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑍 ) ) | 
						
							| 9 | 6 8 | mp1i | ⊢ ( 𝑀  ∈  Mnd  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑍 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ 𝑀 ) | 
						
							| 11 | 2 10 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  =  ( Cntr ‘ 𝑀 ) | 
						
							| 12 |  | ssid | ⊢ ( Base ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 13 | 2 10 | cntzsubm | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( Base ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 14 | 12 13 | mpan2 | ⊢ ( 𝑀  ∈  Mnd  →  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 15 | 11 14 | eqeltrrid | ⊢ ( 𝑀  ∈  Mnd  →  ( Cntr ‘ 𝑀 )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 16 | 1 | submmnd | ⊢ ( ( Cntr ‘ 𝑀 )  ∈  ( SubMnd ‘ 𝑀 )  →  𝑍  ∈  Mnd ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑀  ∈  Mnd  →  𝑍  ∈  Mnd ) | 
						
							| 18 |  | simp2 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  ( Cntr ‘ 𝑀 )  ∧  𝑦  ∈  ( Cntr ‘ 𝑀 ) )  →  𝑥  ∈  ( Cntr ‘ 𝑀 ) ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  ( Cntr ‘ 𝑀 )  ∧  𝑦  ∈  ( Cntr ‘ 𝑀 ) )  →  𝑦  ∈  ( Cntr ‘ 𝑀 ) ) | 
						
							| 20 | 3 19 | sselid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  ( Cntr ‘ 𝑀 )  ∧  𝑦  ∈  ( Cntr ‘ 𝑀 ) )  →  𝑦  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Cntr ‘ 𝑀 )  =  ( Cntr ‘ 𝑀 ) | 
						
							| 22 | 2 7 21 | cntri | ⊢ ( ( 𝑥  ∈  ( Cntr ‘ 𝑀 )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  ( Cntr ‘ 𝑀 )  ∧  𝑦  ∈  ( Cntr ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 24 | 5 9 17 23 | iscmnd | ⊢ ( 𝑀  ∈  Mnd  →  𝑍  ∈  CMnd ) |