| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzrec.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntzrec.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 3 |
1 2
|
cntzssv |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 4 |
3
|
a1i |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 6 |
1 5
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ Mnd ) |
| 9 |
|
simpr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
| 10 |
9
|
sselda |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 12 |
1 11 5
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 13 |
8 10 12
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 14 |
1 11 5
|
mndrid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 15 |
8 10 14
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 16 |
13 15
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 18 |
1 11 2
|
elcntz |
⊢ ( 𝑆 ⊆ 𝐵 → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) |
| 20 |
7 17 19
|
mpbir2and |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 21 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑀 ∈ Mnd ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 23 |
3 22
|
sselid |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 24 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 25 |
3 24
|
sselid |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 26 |
1 11
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 27 |
21 23 25 26
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 28 |
21
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ Mnd ) |
| 29 |
23
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 30 |
25
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 31 |
10
|
adantlr |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 32 |
1 11
|
mndass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 33 |
28 29 30 31 32
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 34 |
11 2
|
cntzi |
⊢ ( ( 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 35 |
24 34
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 37 |
1 11
|
mndass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 38 |
28 29 31 30 37
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 39 |
11 2
|
cntzi |
⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 40 |
22 39
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 41 |
40
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 42 |
36 38 41
|
3eqtr2d |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 43 |
1 11
|
mndass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 44 |
28 31 29 30 43
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 45 |
33 42 44
|
3eqtrd |
⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 47 |
1 11 2
|
elcntz |
⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 49 |
27 46 48
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 50 |
49
|
ralrimivva |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 51 |
1 5 11
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 53 |
4 20 50 52
|
mpbir3and |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |