| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bra11 |
⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) |
| 2 |
|
f1ocnvfv |
⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) = 𝑇 → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑦 ∈ ℋ → ( ( bra ‘ 𝑦 ) = 𝑇 → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) ) |
| 4 |
3
|
imp |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ◡ bra ‘ 𝑇 ) = 𝑦 ) |
| 5 |
4
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 6 |
5
|
adantll |
⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 7 |
|
braval |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 9 |
8
|
adantll |
⊢ ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 11 |
|
fveq1 |
⊢ ( ( bra ‘ 𝑦 ) = 𝑇 → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( ( bra ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 13 |
6 10 12
|
3eqtr2rd |
⊢ ( ( ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( bra ‘ 𝑦 ) = 𝑇 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 14 |
|
rnbra |
⊢ ran bra = ( LinFn ∩ ContFn ) |
| 15 |
14
|
eleq2i |
⊢ ( 𝑇 ∈ ran bra ↔ 𝑇 ∈ ( LinFn ∩ ContFn ) ) |
| 16 |
|
f1of |
⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) → bra : ℋ ⟶ ( LinFn ∩ ContFn ) ) |
| 17 |
1 16
|
ax-mp |
⊢ bra : ℋ ⟶ ( LinFn ∩ ContFn ) |
| 18 |
|
ffn |
⊢ ( bra : ℋ ⟶ ( LinFn ∩ ContFn ) → bra Fn ℋ ) |
| 19 |
17 18
|
ax-mp |
⊢ bra Fn ℋ |
| 20 |
|
fvelrnb |
⊢ ( bra Fn ℋ → ( 𝑇 ∈ ran bra ↔ ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( 𝑇 ∈ ran bra ↔ ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 22 |
15 21
|
sylbb1 |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) → ∃ 𝑦 ∈ ℋ ( bra ‘ 𝑦 ) = 𝑇 ) |
| 24 |
13 23
|
r19.29a |
⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 26 |
|
f1ocnvdm |
⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
| 27 |
1 26
|
mpan |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) |
| 28 |
|
riesz4 |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝑦 = ( ◡ bra ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 32 |
31
|
riota2 |
⊢ ( ( ( ◡ bra ‘ 𝑇 ) ∈ ℋ ∧ ∃! 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) ) |
| 33 |
27 28 32
|
syl2anc |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih ( ◡ bra ‘ 𝑇 ) ) ↔ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) ) |
| 34 |
25 33
|
mpbid |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) = ( ◡ bra ‘ 𝑇 ) ) |
| 35 |
34
|
eqcomd |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |