Metamath Proof Explorer


Theorem comffval2

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval2.o 𝑂 = ( compf𝐶 )
comfffval2.b 𝐵 = ( Base ‘ 𝐶 )
comfffval2.h 𝐻 = ( Homf𝐶 )
comfffval2.x · = ( comp ‘ 𝐶 )
comffval2.x ( 𝜑𝑋𝐵 )
comffval2.y ( 𝜑𝑌𝐵 )
comffval2.z ( 𝜑𝑍𝐵 )
Assertion comffval2 ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) )

Proof

Step Hyp Ref Expression
1 comfffval2.o 𝑂 = ( compf𝐶 )
2 comfffval2.b 𝐵 = ( Base ‘ 𝐶 )
3 comfffval2.h 𝐻 = ( Homf𝐶 )
4 comfffval2.x · = ( comp ‘ 𝐶 )
5 comffval2.x ( 𝜑𝑋𝐵 )
6 comffval2.y ( 𝜑𝑌𝐵 )
7 comffval2.z ( 𝜑𝑍𝐵 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 1 2 8 4 5 6 7 comffval ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) )
10 3 2 8 6 7 homfval ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) )
11 3 2 8 5 6 homfval ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
12 eqidd ( 𝜑 → ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) )
13 10 11 12 mpoeq123dv ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) )
14 9 13 eqtr4d ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝑓 ) ) )