Step |
Hyp |
Ref |
Expression |
1 |
|
comfffval2.o |
⊢ 𝑂 = ( compf ‘ 𝐶 ) |
2 |
|
comfffval2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
comfffval2.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
4 |
|
comfffval2.x |
⊢ · = ( comp ‘ 𝐶 ) |
5 |
|
comffval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
comffval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
comffval2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
1 2 8 4 5 6 7
|
comffval |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
10 |
3 2 8 6 7
|
homfval |
⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
11 |
3 2 8 5 6
|
homfval |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) |
13 |
10 11 12
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
14 |
9 13
|
eqtr4d |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |