Metamath Proof Explorer


Theorem coprmdvdsb

Description: Multiplication by a coprime number does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion coprmdvdsb ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( 𝐾𝑁𝐾 ∥ ( 𝑀 · 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → 𝐾 ∈ ℤ )
2 simp3l ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → 𝑀 ∈ ℤ )
3 simp2 ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → 𝑁 ∈ ℤ )
4 dvdsmultr2 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾𝑁𝐾 ∥ ( 𝑀 · 𝑁 ) ) )
5 1 2 3 4 syl3anc ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( 𝐾𝑁𝐾 ∥ ( 𝑀 · 𝑁 ) ) )
6 simp3r ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( 𝐾 gcd 𝑀 ) = 1 )
7 coprmdvds ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝐾𝑁 ) )
8 1 2 3 7 syl3anc ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝐾𝑁 ) )
9 6 8 mpan2d ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) → 𝐾𝑁 ) )
10 5 9 impbid ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) = 1 ) ) → ( 𝐾𝑁𝐾 ∥ ( 𝑀 · 𝑁 ) ) )