Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> K e. ZZ ) |
2 |
|
simp3l |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> M e. ZZ ) |
3 |
|
simp2 |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> N e. ZZ ) |
4 |
|
dvdsmultr2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> ( K || N -> K || ( M x. N ) ) ) |
6 |
|
simp3r |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> ( K gcd M ) = 1 ) |
7 |
|
coprmdvds |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |
8 |
1 2 3 7
|
syl3anc |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |
9 |
6 8
|
mpan2d |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> ( K || ( M x. N ) -> K || N ) ) |
10 |
5 9
|
impbid |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M e. ZZ /\ ( K gcd M ) = 1 ) ) -> ( K || N <-> K || ( M x. N ) ) ) |