| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> N e. RR ) |
| 2 |
|
simp2 |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M e. RR ) |
| 3 |
2
|
recnd |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M e. CC ) |
| 4 |
|
simp3 |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M =/= 0 ) |
| 5 |
3 4
|
absrpcld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. RR+ ) |
| 6 |
|
moddifz |
|- ( ( N e. RR /\ ( abs ` M ) e. RR+ ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ ) |
| 7 |
1 5 6
|
syl2anc |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ ) |
| 8 |
|
absidm |
|- ( M e. CC -> ( abs ` ( abs ` M ) ) = ( abs ` M ) ) |
| 9 |
3 8
|
syl |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( abs ` M ) ) = ( abs ` M ) ) |
| 10 |
9
|
oveq2d |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` ( abs ` M ) ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` M ) ) ) |
| 11 |
1 5
|
modcld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N mod ( abs ` M ) ) e. RR ) |
| 12 |
1 11
|
resubcld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N - ( N mod ( abs ` M ) ) ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N - ( N mod ( abs ` M ) ) ) e. CC ) |
| 14 |
3
|
abscld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. CC ) |
| 16 |
5
|
rpne0d |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) =/= 0 ) |
| 17 |
13 15 16
|
absdivd |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` ( abs ` M ) ) ) ) |
| 18 |
13 3 4
|
absdivd |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` M ) ) ) |
| 19 |
10 17 18
|
3eqtr4d |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) = ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) ) |
| 20 |
19
|
eleq1d |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) |
| 21 |
12 14 16
|
redivcld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. RR ) |
| 22 |
|
absz |
|- ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. RR -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ ) ) |
| 23 |
21 22
|
syl |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ ) ) |
| 24 |
12 2 4
|
redivcld |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. RR ) |
| 25 |
|
absz |
|- ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. RR -> ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) |
| 26 |
24 25
|
syl |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) |
| 27 |
20 23 26
|
3bitr4d |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ ) ) |
| 28 |
7 27
|
mpbid |
|- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ ) |