| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> N e. RR ) | 
						
							| 2 |  | simp2 |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M e. RR ) | 
						
							| 3 | 2 | recnd |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M e. CC ) | 
						
							| 4 |  | simp3 |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> M =/= 0 ) | 
						
							| 5 | 3 4 | absrpcld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. RR+ ) | 
						
							| 6 |  | moddifz |  |-  ( ( N e. RR /\ ( abs ` M ) e. RR+ ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ ) | 
						
							| 7 | 1 5 6 | syl2anc |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ ) | 
						
							| 8 |  | absidm |  |-  ( M e. CC -> ( abs ` ( abs ` M ) ) = ( abs ` M ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( abs ` M ) ) = ( abs ` M ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` ( abs ` M ) ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` M ) ) ) | 
						
							| 11 | 1 5 | modcld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N mod ( abs ` M ) ) e. RR ) | 
						
							| 12 | 1 11 | resubcld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N - ( N mod ( abs ` M ) ) ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N - ( N mod ( abs ` M ) ) ) e. CC ) | 
						
							| 14 | 3 | abscld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) e. CC ) | 
						
							| 16 | 5 | rpne0d |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` M ) =/= 0 ) | 
						
							| 17 | 13 15 16 | absdivd |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` ( abs ` M ) ) ) ) | 
						
							| 18 | 13 3 4 | absdivd |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) = ( ( abs ` ( N - ( N mod ( abs ` M ) ) ) ) / ( abs ` M ) ) ) | 
						
							| 19 | 10 17 18 | 3eqtr4d |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) = ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) | 
						
							| 21 | 12 14 16 | redivcld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. RR ) | 
						
							| 22 |  | absz |  |-  ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. RR -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) ) e. ZZ ) ) | 
						
							| 24 | 12 2 4 | redivcld |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. RR ) | 
						
							| 25 |  | absz |  |-  ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. RR -> ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ <-> ( abs ` ( ( N - ( N mod ( abs ` M ) ) ) / M ) ) e. ZZ ) ) | 
						
							| 27 | 20 23 26 | 3bitr4d |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( ( N - ( N mod ( abs ` M ) ) ) / ( abs ` M ) ) e. ZZ <-> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ ) ) | 
						
							| 28 | 7 27 | mpbid |  |-  ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( ( N - ( N mod ( abs ` M ) ) ) / M ) e. ZZ ) |