Step |
Hyp |
Ref |
Expression |
1 |
|
absdvdsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
2 |
1
|
adantlr |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
3 |
|
nnabscl |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
4 |
|
dvdsval3 |
|- ( ( ( abs ` M ) e. NN /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |
5 |
3 4
|
sylan |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |
6 |
2 5
|
bitrd |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |
7 |
6
|
an32s |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |
8 |
7
|
3impa |
|- ( ( M e. ZZ /\ N e. ZZ /\ M =/= 0 ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |