| Step | Hyp | Ref | Expression | 
						
							| 1 |  | absdvdsb |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) | 
						
							| 2 | 1 | adantlr |  |-  ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) | 
						
							| 3 |  | nnabscl |  |-  ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) | 
						
							| 4 |  | dvdsval3 |  |-  ( ( ( abs ` M ) e. NN /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( N mod ( abs ` M ) ) = 0 ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( N mod ( abs ` M ) ) = 0 ) ) | 
						
							| 6 | 2 5 | bitrd |  |-  ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) | 
						
							| 7 | 6 | an32s |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) | 
						
							| 8 | 7 | 3impa |  |-  ( ( M e. ZZ /\ N e. ZZ /\ M =/= 0 ) -> ( M || N <-> ( N mod ( abs ` M ) ) = 0 ) ) |