Step |
Hyp |
Ref |
Expression |
1 |
|
absdvdsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
2 |
1
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
3 |
|
nnabscl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℕ ) |
4 |
|
dvdsval3 |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( 𝑁 mod ( abs ‘ 𝑀 ) ) = 0 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( 𝑁 mod ( abs ‘ 𝑀 ) ) = 0 ) ) |
6 |
2 5
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod ( abs ‘ 𝑀 ) ) = 0 ) ) |
7 |
6
|
an32s |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod ( abs ‘ 𝑀 ) ) = 0 ) ) |
8 |
7
|
3impa |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod ( abs ‘ 𝑀 ) ) = 0 ) ) |