| Step | Hyp | Ref | Expression | 
						
							| 1 |  | absdvdsb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  ( abs ‘ 𝑀 )  ∥  𝑁 ) ) | 
						
							| 2 | 1 | adantlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  ( abs ‘ 𝑀 )  ∥  𝑁 ) ) | 
						
							| 3 |  | nnabscl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  →  ( abs ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 4 |  | dvdsval3 | ⊢ ( ( ( abs ‘ 𝑀 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ 𝑀 )  ∥  𝑁  ↔  ( 𝑁  mod  ( abs ‘ 𝑀 ) )  =  0 ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ 𝑀 )  ∥  𝑁  ↔  ( 𝑁  mod  ( abs ‘ 𝑀 ) )  =  0 ) ) | 
						
							| 6 | 2 5 | bitrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  ( 𝑁  mod  ( abs ‘ 𝑀 ) )  =  0 ) ) | 
						
							| 7 | 6 | an32s | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  ≠  0 )  →  ( 𝑀  ∥  𝑁  ↔  ( 𝑁  mod  ( abs ‘ 𝑀 ) )  =  0 ) ) | 
						
							| 8 | 7 | 3impa | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≠  0 )  →  ( 𝑀  ∥  𝑁  ↔  ( 𝑁  mod  ( abs ‘ 𝑀 ) )  =  0 ) ) |