Metamath Proof Explorer


Theorem dvdsabsmod0

Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvdsabsmod0 MNM0MNNmodM=0

Proof

Step Hyp Ref Expression
1 absdvdsb MNMNMN
2 1 adantlr MM0NMNMN
3 nnabscl MM0M
4 dvdsval3 MNMNNmodM=0
5 3 4 sylan MM0NMNNmodM=0
6 2 5 bitrd MM0NMNNmodM=0
7 6 an32s MNM0MNNmodM=0
8 7 3impa MNM0MNNmodM=0