Metamath Proof Explorer


Theorem dvdsabsmod0

Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 24-Sep-2014) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvdsabsmod0 M N M 0 M N N mod M = 0

Proof

Step Hyp Ref Expression
1 absdvdsb M N M N M N
2 1 adantlr M M 0 N M N M N
3 nnabscl M M 0 M
4 dvdsval3 M N M N N mod M = 0
5 3 4 sylan M M 0 N M N N mod M = 0
6 2 5 bitrd M M 0 N M N N mod M = 0
7 6 an32s M N M 0 M N N mod M = 0
8 7 3impa M N M 0 M N N mod M = 0