| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
3cn |
⊢ 3 ∈ ℂ |
| 3 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 4 |
1 2 3
|
divcli |
⊢ ( π / 3 ) ∈ ℂ |
| 5 |
|
cosppi |
⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( ( π / 3 ) + π ) ) = - ( cos ‘ ( π / 3 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( cos ‘ ( ( π / 3 ) + π ) ) = - ( cos ‘ ( π / 3 ) ) |
| 7 |
|
3rdpwhole |
⊢ ( π ∈ ℂ → ( ( π / 3 ) + π ) = ( 4 · ( π / 3 ) ) ) |
| 8 |
1 7
|
ax-mp |
⊢ ( ( π / 3 ) + π ) = ( 4 · ( π / 3 ) ) |
| 9 |
8
|
fveq2i |
⊢ ( cos ‘ ( ( π / 3 ) + π ) ) = ( cos ‘ ( 4 · ( π / 3 ) ) ) |
| 10 |
|
sincos3rdpi |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
| 11 |
10
|
simpri |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
| 12 |
11
|
negeqi |
⊢ - ( cos ‘ ( π / 3 ) ) = - ( 1 / 2 ) |
| 13 |
6 9 12
|
3eqtr3i |
⊢ ( cos ‘ ( 4 · ( π / 3 ) ) ) = - ( 1 / 2 ) |