| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sincos6thpi |
⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
| 2 |
1
|
simpli |
⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
| 3 |
2
|
fveq2i |
⊢ ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( arcsin ‘ ( 1 / 2 ) ) |
| 4 |
|
pire |
⊢ π ∈ ℝ |
| 5 |
|
6re |
⊢ 6 ∈ ℝ |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
6pos |
⊢ 0 < 6 |
| 8 |
6 7
|
gtneii |
⊢ 6 ≠ 0 |
| 9 |
4 5 8
|
redivcli |
⊢ ( π / 6 ) ∈ ℝ |
| 10 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
| 11 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 12 |
|
2re |
⊢ 2 ∈ ℝ |
| 13 |
|
pipos |
⊢ 0 < π |
| 14 |
|
2pos |
⊢ 0 < 2 |
| 15 |
4 12 13 14
|
divgt0ii |
⊢ 0 < ( π / 2 ) |
| 16 |
|
lt0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) |
| 17 |
15 16
|
mpbii |
⊢ ( ( π / 2 ) ∈ ℝ → - ( π / 2 ) < 0 ) |
| 18 |
11 17
|
ax-mp |
⊢ - ( π / 2 ) < 0 |
| 19 |
4 5 13 7
|
divgt0ii |
⊢ 0 < ( π / 6 ) |
| 20 |
10 6 9 18 19
|
lttrii |
⊢ - ( π / 2 ) < ( π / 6 ) |
| 21 |
10 9 20
|
ltleii |
⊢ - ( π / 2 ) ≤ ( π / 6 ) |
| 22 |
|
2lt6 |
⊢ 2 < 6 |
| 23 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 24 |
23
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ+ ) |
| 25 |
|
6rp |
⊢ 6 ∈ ℝ+ |
| 26 |
25
|
a1i |
⊢ ( ⊤ → 6 ∈ ℝ+ ) |
| 27 |
|
pirp |
⊢ π ∈ ℝ+ |
| 28 |
27
|
a1i |
⊢ ( ⊤ → π ∈ ℝ+ ) |
| 29 |
24 26 28
|
ltdiv2d |
⊢ ( ⊤ → ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) ) |
| 30 |
22 29
|
mpbii |
⊢ ( ⊤ → ( π / 6 ) < ( π / 2 ) ) |
| 31 |
30
|
mptru |
⊢ ( π / 6 ) < ( π / 2 ) |
| 32 |
9 11 31
|
ltleii |
⊢ ( π / 6 ) ≤ ( π / 2 ) |
| 33 |
10 11
|
elicc2i |
⊢ ( ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( π / 6 ) ∧ ( π / 6 ) ≤ ( π / 2 ) ) ) |
| 34 |
9 21 32 33
|
mpbir3an |
⊢ ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 35 |
|
reasinsin |
⊢ ( ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( π / 6 ) ) |
| 36 |
34 35
|
ax-mp |
⊢ ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( π / 6 ) |
| 37 |
3 36
|
eqtr3i |
⊢ ( arcsin ‘ ( 1 / 2 ) ) = ( π / 6 ) |