Metamath Proof Explorer


Theorem asin1half

Description: The arcsine of 1 / 2 is _pi / 6 . (Contributed by SN, 31-Aug-2025)

Ref Expression
Assertion asin1half ( arcsin ‘ ( 1 / 2 ) ) = ( π / 6 )

Proof

Step Hyp Ref Expression
1 sincos6thpi ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) )
2 1 simpli ( sin ‘ ( π / 6 ) ) = ( 1 / 2 )
3 2 fveq2i ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( arcsin ‘ ( 1 / 2 ) )
4 pire π ∈ ℝ
5 6re 6 ∈ ℝ
6 0re 0 ∈ ℝ
7 6pos 0 < 6
8 6 7 gtneii 6 ≠ 0
9 4 5 8 redivcli ( π / 6 ) ∈ ℝ
10 neghalfpire - ( π / 2 ) ∈ ℝ
11 halfpire ( π / 2 ) ∈ ℝ
12 2re 2 ∈ ℝ
13 pipos 0 < π
14 2pos 0 < 2
15 4 12 13 14 divgt0ii 0 < ( π / 2 )
16 lt0neg2 ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) )
17 15 16 mpbii ( ( π / 2 ) ∈ ℝ → - ( π / 2 ) < 0 )
18 11 17 ax-mp - ( π / 2 ) < 0
19 4 5 13 7 divgt0ii 0 < ( π / 6 )
20 10 6 9 18 19 lttrii - ( π / 2 ) < ( π / 6 )
21 10 9 20 ltleii - ( π / 2 ) ≤ ( π / 6 )
22 2lt6 2 < 6
23 2rp 2 ∈ ℝ+
24 23 a1i ( ⊤ → 2 ∈ ℝ+ )
25 6rp 6 ∈ ℝ+
26 25 a1i ( ⊤ → 6 ∈ ℝ+ )
27 pirp π ∈ ℝ+
28 27 a1i ( ⊤ → π ∈ ℝ+ )
29 24 26 28 ltdiv2d ( ⊤ → ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) )
30 22 29 mpbii ( ⊤ → ( π / 6 ) < ( π / 2 ) )
31 30 mptru ( π / 6 ) < ( π / 2 )
32 9 11 31 ltleii ( π / 6 ) ≤ ( π / 2 )
33 10 11 elicc2i ( ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( π / 6 ) ∧ ( π / 6 ) ≤ ( π / 2 ) ) )
34 9 21 32 33 mpbir3an ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) )
35 reasinsin ( ( π / 6 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( π / 6 ) )
36 34 35 ax-mp ( arcsin ‘ ( sin ‘ ( π / 6 ) ) ) = ( π / 6 )
37 3 36 eqtr3i ( arcsin ‘ ( 1 / 2 ) ) = ( π / 6 )