Metamath Proof Explorer


Theorem acos1half

Description: The arccosine of 1 / 2 is _pi / 3 . (Contributed by SN, 31-Aug-2024)

Ref Expression
Assertion acos1half ( arccos ‘ ( 1 / 2 ) ) = ( π / 3 )

Proof

Step Hyp Ref Expression
1 sincos3rdpi ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) )
2 1 simpri ( cos ‘ ( π / 3 ) ) = ( 1 / 2 )
3 2 fveq2i ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( arccos ‘ ( 1 / 2 ) )
4 pire π ∈ ℝ
5 3re 3 ∈ ℝ
6 3ne0 3 ≠ 0
7 4 5 6 redivcli ( π / 3 ) ∈ ℝ
8 7 recni ( π / 3 ) ∈ ℂ
9 rere ( ( π / 3 ) ∈ ℝ → ( ℜ ‘ ( π / 3 ) ) = ( π / 3 ) )
10 7 9 ax-mp ( ℜ ‘ ( π / 3 ) ) = ( π / 3 )
11 7 rexri ( π / 3 ) ∈ ℝ*
12 pipos 0 < π
13 3pos 0 < 3
14 4 5 12 13 divgt0ii 0 < ( π / 3 )
15 picn π ∈ ℂ
16 4 12 gt0ne0ii π ≠ 0
17 15 16 dividi ( π / π ) = 1
18 1lt3 1 < 3
19 17 18 eqbrtri ( π / π ) < 3
20 4 5 4 13 12 ltdiv23ii ( ( π / 3 ) < π ↔ ( π / π ) < 3 )
21 19 20 mpbir ( π / 3 ) < π
22 0xr 0 ∈ ℝ*
23 4 rexri π ∈ ℝ*
24 elioo1 ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( π / 3 ) ∈ ( 0 (,) π ) ↔ ( ( π / 3 ) ∈ ℝ* ∧ 0 < ( π / 3 ) ∧ ( π / 3 ) < π ) ) )
25 22 23 24 mp2an ( ( π / 3 ) ∈ ( 0 (,) π ) ↔ ( ( π / 3 ) ∈ ℝ* ∧ 0 < ( π / 3 ) ∧ ( π / 3 ) < π ) )
26 11 14 21 25 mpbir3an ( π / 3 ) ∈ ( 0 (,) π )
27 10 26 eqeltri ( ℜ ‘ ( π / 3 ) ) ∈ ( 0 (,) π )
28 acoscos ( ( ( π / 3 ) ∈ ℂ ∧ ( ℜ ‘ ( π / 3 ) ) ∈ ( 0 (,) π ) ) → ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( π / 3 ) )
29 8 27 28 mp2an ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( π / 3 )
30 3 29 eqtr3i ( arccos ‘ ( 1 / 2 ) ) = ( π / 3 )