Step |
Hyp |
Ref |
Expression |
1 |
|
sincos3rdpi |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
2 |
1
|
simpri |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
3 |
2
|
fveq2i |
⊢ ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( arccos ‘ ( 1 / 2 ) ) |
4 |
|
pire |
⊢ π ∈ ℝ |
5 |
|
3re |
⊢ 3 ∈ ℝ |
6 |
|
3ne0 |
⊢ 3 ≠ 0 |
7 |
4 5 6
|
redivcli |
⊢ ( π / 3 ) ∈ ℝ |
8 |
7
|
recni |
⊢ ( π / 3 ) ∈ ℂ |
9 |
|
rere |
⊢ ( ( π / 3 ) ∈ ℝ → ( ℜ ‘ ( π / 3 ) ) = ( π / 3 ) ) |
10 |
7 9
|
ax-mp |
⊢ ( ℜ ‘ ( π / 3 ) ) = ( π / 3 ) |
11 |
7
|
rexri |
⊢ ( π / 3 ) ∈ ℝ* |
12 |
|
pipos |
⊢ 0 < π |
13 |
|
3pos |
⊢ 0 < 3 |
14 |
4 5 12 13
|
divgt0ii |
⊢ 0 < ( π / 3 ) |
15 |
|
picn |
⊢ π ∈ ℂ |
16 |
4 12
|
gt0ne0ii |
⊢ π ≠ 0 |
17 |
15 16
|
dividi |
⊢ ( π / π ) = 1 |
18 |
|
1lt3 |
⊢ 1 < 3 |
19 |
17 18
|
eqbrtri |
⊢ ( π / π ) < 3 |
20 |
4 5 4 13 12
|
ltdiv23ii |
⊢ ( ( π / 3 ) < π ↔ ( π / π ) < 3 ) |
21 |
19 20
|
mpbir |
⊢ ( π / 3 ) < π |
22 |
|
0xr |
⊢ 0 ∈ ℝ* |
23 |
4
|
rexri |
⊢ π ∈ ℝ* |
24 |
|
elioo1 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( π / 3 ) ∈ ( 0 (,) π ) ↔ ( ( π / 3 ) ∈ ℝ* ∧ 0 < ( π / 3 ) ∧ ( π / 3 ) < π ) ) ) |
25 |
22 23 24
|
mp2an |
⊢ ( ( π / 3 ) ∈ ( 0 (,) π ) ↔ ( ( π / 3 ) ∈ ℝ* ∧ 0 < ( π / 3 ) ∧ ( π / 3 ) < π ) ) |
26 |
11 14 21 25
|
mpbir3an |
⊢ ( π / 3 ) ∈ ( 0 (,) π ) |
27 |
10 26
|
eqeltri |
⊢ ( ℜ ‘ ( π / 3 ) ) ∈ ( 0 (,) π ) |
28 |
|
acoscos |
⊢ ( ( ( π / 3 ) ∈ ℂ ∧ ( ℜ ‘ ( π / 3 ) ) ∈ ( 0 (,) π ) ) → ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( π / 3 ) ) |
29 |
8 27 28
|
mp2an |
⊢ ( arccos ‘ ( cos ‘ ( π / 3 ) ) ) = ( π / 3 ) |
30 |
3 29
|
eqtr3i |
⊢ ( arccos ‘ ( 1 / 2 ) ) = ( π / 3 ) |