Metamath Proof Explorer


Theorem acos1half

Description: The arccosine of 1 / 2 is _pi / 3 . (Contributed by SN, 31-Aug-2024)

Ref Expression
Assertion acos1half arccos 1 2 = π 3

Proof

Step Hyp Ref Expression
1 sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2
2 1 simpri cos π 3 = 1 2
3 2 fveq2i arccos cos π 3 = arccos 1 2
4 pire π
5 3re 3
6 3ne0 3 0
7 4 5 6 redivcli π 3
8 7 recni π 3
9 rere π 3 π 3 = π 3
10 7 9 ax-mp π 3 = π 3
11 7 rexri π 3 *
12 pipos 0 < π
13 3pos 0 < 3
14 4 5 12 13 divgt0ii 0 < π 3
15 picn π
16 4 12 gt0ne0ii π 0
17 15 16 dividi π π = 1
18 1lt3 1 < 3
19 17 18 eqbrtri π π < 3
20 4 5 4 13 12 ltdiv23ii π 3 < π π π < 3
21 19 20 mpbir π 3 < π
22 0xr 0 *
23 4 rexri π *
24 elioo1 0 * π * π 3 0 π π 3 * 0 < π 3 π 3 < π
25 22 23 24 mp2an π 3 0 π π 3 * 0 < π 3 π 3 < π
26 11 14 21 25 mpbir3an π 3 0 π
27 10 26 eqeltri π 3 0 π
28 acoscos π 3 π 3 0 π arccos cos π 3 = π 3
29 8 27 28 mp2an arccos cos π 3 = π 3
30 3 29 eqtr3i arccos 1 2 = π 3