Metamath Proof Explorer


Theorem sincos3rdpi

Description: The sine and cosine of _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion sincos3rdpi sinπ3=32cosπ3=12

Proof

Step Hyp Ref Expression
1 picn π
2 2cn 2
3 2ne0 20
4 2 3 reccli 12
5 3cn 3
6 3ne0 30
7 5 6 reccli 13
8 1 4 7 subdii π1213=π12π13
9 halfthird 1213=16
10 9 oveq2i π1213=π16
11 8 10 eqtr3i π12π13=π16
12 1 2 3 divreci π2=π12
13 1 5 6 divreci π3=π13
14 12 13 oveq12i π2π3=π12π13
15 6cn 6
16 6nn 6
17 16 nnne0i 60
18 1 15 17 divreci π6=π16
19 11 14 18 3eqtr4i π2π3=π6
20 19 fveq2i cosπ2π3=cosπ6
21 1 5 6 divcli π3
22 coshalfpim π3cosπ2π3=sinπ3
23 21 22 ax-mp cosπ2π3=sinπ3
24 sincos6thpi sinπ6=12cosπ6=32
25 24 simpri cosπ6=32
26 20 23 25 3eqtr3i sinπ3=32
27 19 fveq2i sinπ2π3=sinπ6
28 sinhalfpim π3sinπ2π3=cosπ3
29 21 28 ax-mp sinπ2π3=cosπ3
30 24 simpli sinπ6=12
31 27 29 30 3eqtr3i cosπ3=12
32 26 31 pm3.2i sinπ3=32cosπ3=12