| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
| 2 |
1
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
| 3 |
2
|
fveq2i |
|- ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( arccos ` ( 1 / 2 ) ) |
| 4 |
|
pire |
|- _pi e. RR |
| 5 |
|
3re |
|- 3 e. RR |
| 6 |
|
3ne0 |
|- 3 =/= 0 |
| 7 |
4 5 6
|
redivcli |
|- ( _pi / 3 ) e. RR |
| 8 |
7
|
recni |
|- ( _pi / 3 ) e. CC |
| 9 |
|
rere |
|- ( ( _pi / 3 ) e. RR -> ( Re ` ( _pi / 3 ) ) = ( _pi / 3 ) ) |
| 10 |
7 9
|
ax-mp |
|- ( Re ` ( _pi / 3 ) ) = ( _pi / 3 ) |
| 11 |
7
|
rexri |
|- ( _pi / 3 ) e. RR* |
| 12 |
|
pipos |
|- 0 < _pi |
| 13 |
|
3pos |
|- 0 < 3 |
| 14 |
4 5 12 13
|
divgt0ii |
|- 0 < ( _pi / 3 ) |
| 15 |
|
picn |
|- _pi e. CC |
| 16 |
4 12
|
gt0ne0ii |
|- _pi =/= 0 |
| 17 |
15 16
|
dividi |
|- ( _pi / _pi ) = 1 |
| 18 |
|
1lt3 |
|- 1 < 3 |
| 19 |
17 18
|
eqbrtri |
|- ( _pi / _pi ) < 3 |
| 20 |
4 5 4 13 12
|
ltdiv23ii |
|- ( ( _pi / 3 ) < _pi <-> ( _pi / _pi ) < 3 ) |
| 21 |
19 20
|
mpbir |
|- ( _pi / 3 ) < _pi |
| 22 |
|
0xr |
|- 0 e. RR* |
| 23 |
4
|
rexri |
|- _pi e. RR* |
| 24 |
|
elioo1 |
|- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( _pi / 3 ) e. ( 0 (,) _pi ) <-> ( ( _pi / 3 ) e. RR* /\ 0 < ( _pi / 3 ) /\ ( _pi / 3 ) < _pi ) ) ) |
| 25 |
22 23 24
|
mp2an |
|- ( ( _pi / 3 ) e. ( 0 (,) _pi ) <-> ( ( _pi / 3 ) e. RR* /\ 0 < ( _pi / 3 ) /\ ( _pi / 3 ) < _pi ) ) |
| 26 |
11 14 21 25
|
mpbir3an |
|- ( _pi / 3 ) e. ( 0 (,) _pi ) |
| 27 |
10 26
|
eqeltri |
|- ( Re ` ( _pi / 3 ) ) e. ( 0 (,) _pi ) |
| 28 |
|
acoscos |
|- ( ( ( _pi / 3 ) e. CC /\ ( Re ` ( _pi / 3 ) ) e. ( 0 (,) _pi ) ) -> ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( _pi / 3 ) ) |
| 29 |
8 27 28
|
mp2an |
|- ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( _pi / 3 ) |
| 30 |
3 29
|
eqtr3i |
|- ( arccos ` ( 1 / 2 ) ) = ( _pi / 3 ) |