Step |
Hyp |
Ref |
Expression |
1 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
2 |
1
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
3 |
2
|
fveq2i |
|- ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( arccos ` ( 1 / 2 ) ) |
4 |
|
pire |
|- _pi e. RR |
5 |
|
3re |
|- 3 e. RR |
6 |
|
3ne0 |
|- 3 =/= 0 |
7 |
4 5 6
|
redivcli |
|- ( _pi / 3 ) e. RR |
8 |
7
|
recni |
|- ( _pi / 3 ) e. CC |
9 |
|
rere |
|- ( ( _pi / 3 ) e. RR -> ( Re ` ( _pi / 3 ) ) = ( _pi / 3 ) ) |
10 |
7 9
|
ax-mp |
|- ( Re ` ( _pi / 3 ) ) = ( _pi / 3 ) |
11 |
7
|
rexri |
|- ( _pi / 3 ) e. RR* |
12 |
|
pipos |
|- 0 < _pi |
13 |
|
3pos |
|- 0 < 3 |
14 |
4 5 12 13
|
divgt0ii |
|- 0 < ( _pi / 3 ) |
15 |
|
picn |
|- _pi e. CC |
16 |
4 12
|
gt0ne0ii |
|- _pi =/= 0 |
17 |
15 16
|
dividi |
|- ( _pi / _pi ) = 1 |
18 |
|
1lt3 |
|- 1 < 3 |
19 |
17 18
|
eqbrtri |
|- ( _pi / _pi ) < 3 |
20 |
4 5 4 13 12
|
ltdiv23ii |
|- ( ( _pi / 3 ) < _pi <-> ( _pi / _pi ) < 3 ) |
21 |
19 20
|
mpbir |
|- ( _pi / 3 ) < _pi |
22 |
|
0xr |
|- 0 e. RR* |
23 |
4
|
rexri |
|- _pi e. RR* |
24 |
|
elioo1 |
|- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( _pi / 3 ) e. ( 0 (,) _pi ) <-> ( ( _pi / 3 ) e. RR* /\ 0 < ( _pi / 3 ) /\ ( _pi / 3 ) < _pi ) ) ) |
25 |
22 23 24
|
mp2an |
|- ( ( _pi / 3 ) e. ( 0 (,) _pi ) <-> ( ( _pi / 3 ) e. RR* /\ 0 < ( _pi / 3 ) /\ ( _pi / 3 ) < _pi ) ) |
26 |
11 14 21 25
|
mpbir3an |
|- ( _pi / 3 ) e. ( 0 (,) _pi ) |
27 |
10 26
|
eqeltri |
|- ( Re ` ( _pi / 3 ) ) e. ( 0 (,) _pi ) |
28 |
|
acoscos |
|- ( ( ( _pi / 3 ) e. CC /\ ( Re ` ( _pi / 3 ) ) e. ( 0 (,) _pi ) ) -> ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( _pi / 3 ) ) |
29 |
8 27 28
|
mp2an |
|- ( arccos ` ( cos ` ( _pi / 3 ) ) ) = ( _pi / 3 ) |
30 |
3 29
|
eqtr3i |
|- ( arccos ` ( 1 / 2 ) ) = ( _pi / 3 ) |