Metamath Proof Explorer


Theorem asin1half

Description: The arcsine of 1 / 2 is _pi / 6 . (Contributed by SN, 31-Aug-2025)

Ref Expression
Assertion asin1half
|- ( arcsin ` ( 1 / 2 ) ) = ( _pi / 6 )

Proof

Step Hyp Ref Expression
1 sincos6thpi
 |-  ( ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) /\ ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) )
2 1 simpli
 |-  ( sin ` ( _pi / 6 ) ) = ( 1 / 2 )
3 2 fveq2i
 |-  ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( arcsin ` ( 1 / 2 ) )
4 pire
 |-  _pi e. RR
5 6re
 |-  6 e. RR
6 0re
 |-  0 e. RR
7 6pos
 |-  0 < 6
8 6 7 gtneii
 |-  6 =/= 0
9 4 5 8 redivcli
 |-  ( _pi / 6 ) e. RR
10 neghalfpire
 |-  -u ( _pi / 2 ) e. RR
11 halfpire
 |-  ( _pi / 2 ) e. RR
12 2re
 |-  2 e. RR
13 pipos
 |-  0 < _pi
14 2pos
 |-  0 < 2
15 4 12 13 14 divgt0ii
 |-  0 < ( _pi / 2 )
16 lt0neg2
 |-  ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) )
17 15 16 mpbii
 |-  ( ( _pi / 2 ) e. RR -> -u ( _pi / 2 ) < 0 )
18 11 17 ax-mp
 |-  -u ( _pi / 2 ) < 0
19 4 5 13 7 divgt0ii
 |-  0 < ( _pi / 6 )
20 10 6 9 18 19 lttrii
 |-  -u ( _pi / 2 ) < ( _pi / 6 )
21 10 9 20 ltleii
 |-  -u ( _pi / 2 ) <_ ( _pi / 6 )
22 2lt6
 |-  2 < 6
23 2rp
 |-  2 e. RR+
24 23 a1i
 |-  ( T. -> 2 e. RR+ )
25 6rp
 |-  6 e. RR+
26 25 a1i
 |-  ( T. -> 6 e. RR+ )
27 pirp
 |-  _pi e. RR+
28 27 a1i
 |-  ( T. -> _pi e. RR+ )
29 24 26 28 ltdiv2d
 |-  ( T. -> ( 2 < 6 <-> ( _pi / 6 ) < ( _pi / 2 ) ) )
30 22 29 mpbii
 |-  ( T. -> ( _pi / 6 ) < ( _pi / 2 ) )
31 30 mptru
 |-  ( _pi / 6 ) < ( _pi / 2 )
32 9 11 31 ltleii
 |-  ( _pi / 6 ) <_ ( _pi / 2 )
33 10 11 elicc2i
 |-  ( ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( _pi / 6 ) e. RR /\ -u ( _pi / 2 ) <_ ( _pi / 6 ) /\ ( _pi / 6 ) <_ ( _pi / 2 ) ) )
34 9 21 32 33 mpbir3an
 |-  ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) )
35 reasinsin
 |-  ( ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( _pi / 6 ) )
36 34 35 ax-mp
 |-  ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( _pi / 6 )
37 3 36 eqtr3i
 |-  ( arcsin ` ( 1 / 2 ) ) = ( _pi / 6 )