Step |
Hyp |
Ref |
Expression |
1 |
|
sincos6thpi |
|- ( ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) /\ ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) ) |
2 |
1
|
simpli |
|- ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) |
3 |
2
|
fveq2i |
|- ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( arcsin ` ( 1 / 2 ) ) |
4 |
|
pire |
|- _pi e. RR |
5 |
|
6re |
|- 6 e. RR |
6 |
|
0re |
|- 0 e. RR |
7 |
|
6pos |
|- 0 < 6 |
8 |
6 7
|
gtneii |
|- 6 =/= 0 |
9 |
4 5 8
|
redivcli |
|- ( _pi / 6 ) e. RR |
10 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
11 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
12 |
|
2re |
|- 2 e. RR |
13 |
|
pipos |
|- 0 < _pi |
14 |
|
2pos |
|- 0 < 2 |
15 |
4 12 13 14
|
divgt0ii |
|- 0 < ( _pi / 2 ) |
16 |
|
lt0neg2 |
|- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
17 |
15 16
|
mpbii |
|- ( ( _pi / 2 ) e. RR -> -u ( _pi / 2 ) < 0 ) |
18 |
11 17
|
ax-mp |
|- -u ( _pi / 2 ) < 0 |
19 |
4 5 13 7
|
divgt0ii |
|- 0 < ( _pi / 6 ) |
20 |
10 6 9 18 19
|
lttrii |
|- -u ( _pi / 2 ) < ( _pi / 6 ) |
21 |
10 9 20
|
ltleii |
|- -u ( _pi / 2 ) <_ ( _pi / 6 ) |
22 |
|
2lt6 |
|- 2 < 6 |
23 |
|
2rp |
|- 2 e. RR+ |
24 |
23
|
a1i |
|- ( T. -> 2 e. RR+ ) |
25 |
|
6rp |
|- 6 e. RR+ |
26 |
25
|
a1i |
|- ( T. -> 6 e. RR+ ) |
27 |
|
pirp |
|- _pi e. RR+ |
28 |
27
|
a1i |
|- ( T. -> _pi e. RR+ ) |
29 |
24 26 28
|
ltdiv2d |
|- ( T. -> ( 2 < 6 <-> ( _pi / 6 ) < ( _pi / 2 ) ) ) |
30 |
22 29
|
mpbii |
|- ( T. -> ( _pi / 6 ) < ( _pi / 2 ) ) |
31 |
30
|
mptru |
|- ( _pi / 6 ) < ( _pi / 2 ) |
32 |
9 11 31
|
ltleii |
|- ( _pi / 6 ) <_ ( _pi / 2 ) |
33 |
10 11
|
elicc2i |
|- ( ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( _pi / 6 ) e. RR /\ -u ( _pi / 2 ) <_ ( _pi / 6 ) /\ ( _pi / 6 ) <_ ( _pi / 2 ) ) ) |
34 |
9 21 32 33
|
mpbir3an |
|- ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
35 |
|
reasinsin |
|- ( ( _pi / 6 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( _pi / 6 ) ) |
36 |
34 35
|
ax-mp |
|- ( arcsin ` ( sin ` ( _pi / 6 ) ) ) = ( _pi / 6 ) |
37 |
3 36
|
eqtr3i |
|- ( arcsin ` ( 1 / 2 ) ) = ( _pi / 6 ) |