Metamath Proof Explorer


Theorem cospim

Description: Cosine of a number subtracted from _pi . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion cospim ( 𝐴 ∈ ℂ → ( cos ‘ ( π − 𝐴 ) ) = - ( cos ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
2 picn π ∈ ℂ
3 2 a1i ( 𝐴 ∈ ℂ → π ∈ ℂ )
4 1 3 subcld ( 𝐴 ∈ ℂ → ( 𝐴 − π ) ∈ ℂ )
5 cosneg ( ( 𝐴 − π ) ∈ ℂ → ( cos ‘ - ( 𝐴 − π ) ) = ( cos ‘ ( 𝐴 − π ) ) )
6 4 5 syl ( 𝐴 ∈ ℂ → ( cos ‘ - ( 𝐴 − π ) ) = ( cos ‘ ( 𝐴 − π ) ) )
7 1 3 negsubdi2d ( 𝐴 ∈ ℂ → - ( 𝐴 − π ) = ( π − 𝐴 ) )
8 7 fveq2d ( 𝐴 ∈ ℂ → ( cos ‘ - ( 𝐴 − π ) ) = ( cos ‘ ( π − 𝐴 ) ) )
9 cosmpi ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 − π ) ) = - ( cos ‘ 𝐴 ) )
10 6 8 9 3eqtr3d ( 𝐴 ∈ ℂ → ( cos ‘ ( π − 𝐴 ) ) = - ( cos ‘ 𝐴 ) )