Metamath Proof Explorer


Theorem tan3rdpi

Description: The tangent of _pi / 3 is sqrt 3 . (Contributed by SN, 2-Sep-2025)

Ref Expression
Assertion tan3rdpi ( tan ‘ ( π / 3 ) ) = ( √ ‘ 3 )

Proof

Step Hyp Ref Expression
1 picn π ∈ ℂ
2 3cn 3 ∈ ℂ
3 3ne0 3 ≠ 0
4 1 2 3 divcli ( π / 3 ) ∈ ℂ
5 sincos3rdpi ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) )
6 5 simpri ( cos ‘ ( π / 3 ) ) = ( 1 / 2 )
7 0re 0 ∈ ℝ
8 halfgt0 0 < ( 1 / 2 )
9 7 8 gtneii ( 1 / 2 ) ≠ 0
10 6 9 eqnetri ( cos ‘ ( π / 3 ) ) ≠ 0
11 tanval ( ( ( π / 3 ) ∈ ℂ ∧ ( cos ‘ ( π / 3 ) ) ≠ 0 ) → ( tan ‘ ( π / 3 ) ) = ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) ) )
12 4 10 11 mp2an ( tan ‘ ( π / 3 ) ) = ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) )
13 5 simpli ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 )
14 13 6 oveq12i ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) ) = ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) )
15 2 a1i ( ⊤ → 3 ∈ ℂ )
16 15 sqrtcld ( ⊤ → ( √ ‘ 3 ) ∈ ℂ )
17 1cnd ( ⊤ → 1 ∈ ℂ )
18 2cnd ( ⊤ → 2 ∈ ℂ )
19 ax-1ne0 1 ≠ 0
20 19 a1i ( ⊤ → 1 ≠ 0 )
21 2ne0 2 ≠ 0
22 21 a1i ( ⊤ → 2 ≠ 0 )
23 16 17 18 20 22 divcan7d ( ⊤ → ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( ( √ ‘ 3 ) / 1 ) )
24 16 div1d ( ⊤ → ( ( √ ‘ 3 ) / 1 ) = ( √ ‘ 3 ) )
25 23 24 eqtrd ( ⊤ → ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( √ ‘ 3 ) )
26 25 mptru ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( √ ‘ 3 )
27 12 14 26 3eqtri ( tan ‘ ( π / 3 ) ) = ( √ ‘ 3 )