| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
3cn |
⊢ 3 ∈ ℂ |
| 3 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 4 |
1 2 3
|
divcli |
⊢ ( π / 3 ) ∈ ℂ |
| 5 |
|
sincos3rdpi |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
| 6 |
5
|
simpri |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
| 7 |
|
0re |
⊢ 0 ∈ ℝ |
| 8 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 9 |
7 8
|
gtneii |
⊢ ( 1 / 2 ) ≠ 0 |
| 10 |
6 9
|
eqnetri |
⊢ ( cos ‘ ( π / 3 ) ) ≠ 0 |
| 11 |
|
tanval |
⊢ ( ( ( π / 3 ) ∈ ℂ ∧ ( cos ‘ ( π / 3 ) ) ≠ 0 ) → ( tan ‘ ( π / 3 ) ) = ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) ) ) |
| 12 |
4 10 11
|
mp2an |
⊢ ( tan ‘ ( π / 3 ) ) = ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) ) |
| 13 |
5
|
simpli |
⊢ ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) |
| 14 |
13 6
|
oveq12i |
⊢ ( ( sin ‘ ( π / 3 ) ) / ( cos ‘ ( π / 3 ) ) ) = ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) |
| 15 |
2
|
a1i |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 16 |
15
|
sqrtcld |
⊢ ( ⊤ → ( √ ‘ 3 ) ∈ ℂ ) |
| 17 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 18 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 19 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 20 |
19
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 21 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 22 |
21
|
a1i |
⊢ ( ⊤ → 2 ≠ 0 ) |
| 23 |
16 17 18 20 22
|
divcan7d |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( ( √ ‘ 3 ) / 1 ) ) |
| 24 |
16
|
div1d |
⊢ ( ⊤ → ( ( √ ‘ 3 ) / 1 ) = ( √ ‘ 3 ) ) |
| 25 |
23 24
|
eqtrd |
⊢ ( ⊤ → ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( √ ‘ 3 ) ) |
| 26 |
25
|
mptru |
⊢ ( ( ( √ ‘ 3 ) / 2 ) / ( 1 / 2 ) ) = ( √ ‘ 3 ) |
| 27 |
12 14 26
|
3eqtri |
⊢ ( tan ‘ ( π / 3 ) ) = ( √ ‘ 3 ) |