Metamath Proof Explorer


Theorem tan3rdpi

Description: The tangent of _pi / 3 is sqrt 3 . (Contributed by SN, 2-Sep-2025)

Ref Expression
Assertion tan3rdpi tan π 3 = 3

Proof

Step Hyp Ref Expression
1 picn π
2 3cn 3
3 3ne0 3 0
4 1 2 3 divcli π 3
5 sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2
6 5 simpri cos π 3 = 1 2
7 0re 0
8 halfgt0 0 < 1 2
9 7 8 gtneii 1 2 0
10 6 9 eqnetri cos π 3 0
11 tanval π 3 cos π 3 0 tan π 3 = sin π 3 cos π 3
12 4 10 11 mp2an tan π 3 = sin π 3 cos π 3
13 5 simpli sin π 3 = 3 2
14 13 6 oveq12i sin π 3 cos π 3 = 3 2 1 2
15 2 a1i 3
16 15 sqrtcld 3
17 1cnd 1
18 2cnd 2
19 ax-1ne0 1 0
20 19 a1i 1 0
21 2ne0 2 0
22 21 a1i 2 0
23 16 17 18 20 22 divcan7d 3 2 1 2 = 3 1
24 16 div1d 3 1 = 3
25 23 24 eqtrd 3 2 1 2 = 3
26 25 mptru 3 2 1 2 = 3
27 12 14 26 3eqtri tan π 3 = 3